A lift-and-project cutting plane algorithm for mixed 0-1 programs
نویسندگان
چکیده
We propose a cutting plane algorithm for mixed 0-1 programs based on a family of polyhedra which strengthen the usual LP relaxation. We show how to generate a facet of a polyhedron in this family which is most violated by the current fractional point. This cut is found through the solution of a linear program that has about twice the size of the usual LP relaxation. A lifting step is used to reduce the size of the LP's needed to generate the cuts. An additional strengthening step suggested by Balas and Jeroslow is then applied. We report our computational experience with a preliminary version of the algorithm. This approach is related to the work of Balas on disjunctive programming, the matrix cone relaxations of Lov~sz and Schrijver and the hierarchy of relaxations of Sherali and Adams.
منابع مشابه
CORC Technical Report TR-2001-03 Cuts for mixed 0-1 conic programming
In this we paper we study techniques for generating valid convex constraints for mixed 0-1 conic programs. We show that many of the techniques developed for generating linear cuts for mixed 0-1 linear programs, such as the Gomory cuts, the lift-and-project cuts, and cuts from other hierarchies of tighter relaxations, extend in a straightforward manner to mixed 0-1 conic programs. We also show t...
متن کامل"Binarize and Project" to Generate Cuts for General Mixed-integer Programs
We consider mixed-integer linear programs with arbitrary bounded integer variables. We first describe a cutting plane approach based on the reformulation of integer variables into binary variables and describe a practical algorithm to compute these cuts for the original problem. We use the term “Binarize and Project” to highlight the similarity to the lift-andproject idea of lifting the problem...
متن کاملOn optimizing over lift-and-project closures
The lift-and-project closure is the relaxation obtained by computing all lift-and-project cuts from the initial formulation of a mixed integer linear program or equivalently by computing all mixed integer Gomory cuts read from all tableau’s corresponding to feasible and infeasible bases. In this paper, we present an algorithm for approximating the value of the lift-and-project closure. The orig...
متن کاملComputations with disjunctive cuts for two-stage stochastic mixed 0-1 integer programs
Two-stage stochastic mixed-integer programming (SMIP) problems with recourse are generally difficult to solve. This paper presents a first computational study of a disjunctive cutting plane method for stochastic mixed 0-1 programs that uses lift-and-project cuts based on the extensive form of the two-stage SMIP problem. An extension of the method based on where the data uncertainty appears in t...
متن کاملAn In-Out Approach to Disjunctive Optimization
Cutting plane methods are widely used for solving convex optimization problems and are of fundamental importance, e.g., to provide tight bounds for Mixed-Integer Programs (MIPs). This is obtained by embedding a cut-separation module within a search scheme. The importance of a sound search scheme is well known in the Constraint Programming (CP) community. Unfortunately, the “standard” search sch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 58 شماره
صفحات -
تاریخ انتشار 1993